Study of Short Hydrogen Bonds. IV.* Structures of Dimorphs of 2-Methylpiperidinium Hydrogen $\operatorname{Bis}(p$-chlorobenzoate)

By Shintaro Misaki, Setsuo Kashino \dagger and Masao Haisa
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 28 November 1988; accepted 13 February 1989)

Abstract

Methylpiperidinium hydrogen $\operatorname{bis}(p$ chlorobenzoate), $\quad \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}^{+} . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{O}_{4}^{-}, \quad M_{r}=$ 412.29. Form 1, monoclinic, $C 2 / c, a=21.746$ (3), b $=8.404$ (3), $c=23.777$ (3) $\AA, \quad \beta=110.84$ (1) $)^{\circ}, \quad V=$ 4061 (2) $\AA^{3}, \quad Z=8, \quad D_{x}=1 \cdot 349 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $3 \cdot 13 \mathrm{~mm}^{-1}, F(000)=1728$, final $R=0.055$ for 2363 reflections with $\left|F_{o}\right|$ larger than $3 \sigma\left(F_{o}\right)$; Form 2, monoclinic, $C 2 / c, a=19.084$ (4), $b=9.689$ (3), $c=$ 11.465 (4) $\AA, \beta=90.56(2)^{\circ}, V=2120(1) \AA^{3}, Z=4$, $D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}, \mu=3.00 \mathrm{~mm}^{-1}, \quad F(000)=864$, final $R=0.081$ for 975 reflections with $\left|F_{o}\right|$ larger than $3 \sigma\left(F_{o}\right) . \mathrm{Cu} K \alpha, \lambda=1.54178 \AA, T=295 \mathrm{~K}$. In the crystal of Form 1 the 2 -methylpiperidinium cation and hydrogen bis(p-chlorobenzoate) anion occupy general positions. The anion is composed of neutral and ionized benzoate residues which are held together through an asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond of $\mathrm{O} \cdots \mathrm{O} 2 \cdot 469$ (3) \AA. In Form 2 the cation is disordered around a twofold axis, and the benzoate residues in the anion are linked by a short crystallographically symmetric $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond of O $\cdots O^{2} 2437$ (9) Å.

Introduction. As part of a study on short hydrogen bonds (Misaki, Kashino \& Haisa, 1986, 1989a,b), the relationship between the symmetry of the hydrogen bond and the crystal structure is examined in the dimorphic structures of 2-methylpiperidinium hydrogen $\operatorname{bis}(p$-chlorobenzoate).

Experimental. Experimental details are listed in Table 1. Crystals of Forms 1 and 2 were grown in the same batch by slow evaporation from a xylene solution. The intensities were collected on a Rigaku AFC-5 four-circle diffractometer equipped with a rotating anode with $\omega-2 \theta$-scan method [scan speed $4^{\circ} \min ^{-1}$ in ω, scan range $(1 \cdot 2+0 \cdot 15 \tan \theta)^{\circ}$ in ω, Ni-filtered $\mathrm{Cu} \mathrm{K} \mathrm{\alpha} \quad(\lambda=1.54178 \AA)$ at 40 kV , $200 \mathrm{~mA}]$. Background was measured for 4 s on either side of peak. Three standard reflections were recorded after every 97 reflections. Lorentz and polarization corrections were applied, but no absorp-

[^0]tion correction. Non-zero reflections within $2 \theta_{\text {max }}$ were used for the refinements.

The structure of Form 1 was solved by MULTAN78, and refined by block-diagonal leastsquares method. The value minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, \quad$ where $\quad w=1 /\left[\sigma\left(F_{o}\right)^{2}-0.0367\left|F_{o}\right|\right.$ $\left.+0.0016\left|F_{o}\right|^{2}\right]$. All the H atoms were located on a difference Fourier map. The non-H atoms were refined anisotropically and the H atoms isotropically. Correction for the secondary-extinction effect was applied for the strongest five reflections [$I_{\text {corr }}=$ $\left.I_{o}\left(1+8 \cdot 11 \times 10^{-5} I_{c}\right)\right]$.

The structure of Form 2 was solved by MULTAN78. The non-H atoms of the cation were found by successive Fourier and difference syntheses. The cation was disordered around a twofold axis. The structure was refined by full-matrix least-squares method. All the non-H atoms were refined anisotropically. The value minimized was $\sum w\left(\left|F_{d}\right|-\left|F_{c}\right|\right)^{2}$ with $w=1 / \sigma\left(F_{o}\right)^{2}$. The conformation, bond lengths and bond angles involving the non-H atoms, of the cation were restrained to the same values as those in Form 1. The positional parameters of the H atoms attached to the cation ring were calculated by assuming a usual geometry and were fixed; their thermal parameters were assumed to be identical with B_{eq} of the non-H atoms to which they were attached. The H atoms of the methyl group were not included in the refinement. The positional parameters of the H atoms attached to the phenylene ring were calculated by assuming a usual geometry and were fixed; only their thermal parameters were refined isotropically. The H atom participating in the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond was located at $\overline{1}$ on a difference Fourier map, and the position was fixed at $\overline{1}$ and the $B_{\text {iso }}$ was refined.

The atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Programs used: MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978), RSSFR-5 (Sakurai, 1967), HBLS and DAPH (Ashida, 1973), modified version of CRLS (Takusagawa, 1982), MOLCON (Fujii, 1979) and ORTEP (Johnson, 1971). Computations were carried out at Okayama University Computer Center.
© 1989 International Union of Crystallography

Table 1. Experimental details

| | Form I |
| :--- | :--- | :--- |
| Plate developed | |
| Morphology | |\(\left.\quad \begin{array}{l}Form 2

Prismatic c\end{array}\right]\)

Table 2. Final atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \beta_{i i} / a_{i}^{* 2}$.				
	x	y	z	$B_{c q}$
Form 1				
C(1)	0.1353 (1)	0.0485 (4)	0.0593 (1)	3.5 (1)
C(2)	0.1879 (2)	0.0418 (5)	0.0402 (1)	$5 \cdot 3$ (2)
C(3)	0.1831 (2)	$0 \cdot 1065$ (5)	-0.0151 (2)	5.9 (2)
C(4)	0.1261 (2)	0.1729 (4)	-0.0505 (1)	4.7 (2)
C(5)	0.0722 (2)	0.1796 (5)	-0.0330 (1)	5.6 (2)
C(6)	0.0777 (1)	0.1165 (4)	0.0227 (1)	$4 \cdot 7$ (2)
C(7)	0.1438 (1)	-0.0127 (4)	$0 \cdot 1210$ (1)	3.6 (1)
Cl(8)	$0 \cdot 12082$ (6)	0.2549 (1)	-0.11894 (4)	7.39 (6)
O (9)	0.1954 (1)	-0.0661 (3)	0.15440 (9)	4.9 (1)
O(10)	0.09091 (9)	0.0021 (3)	0.13463 (8)	4.4 (1)
C(11)	0.1236 (1)	0.1725 (3)	0.3267 (1)	$3 \cdot 5$ (1)
C(12)	0.0643 (1)	0.1358 (4)	0.3332 (1)	4.1 (1)
C(13)	0.0509 (1)	0.1911 (4)	0.3826 (1)	4.7 (2)
C(14)	0.0967 (2)	0.2811 (4)	0.4248 (1)	4.7 (2)
C(15)	0.1564 (2)	0.3149 (5)	0.4203 (2)	5.6 (2)
C(16)	0.1695 (2)	0.2610 (4)	0.3701 (1)	4.8 (2)
C(17)	0.1375 (1)	0.1159 (4)	$0 \cdot 2722$ (1)	3.5 (1)
$\mathrm{Cl}(18)$	0.07954 (5)	0.3532 (1)	0.48641 (4)	7.11 (6)
$\mathrm{O}(19)$	0.18385 (9)	0.1792 (3)	0.26050 (9)	4.2 (1)
$\mathrm{O}(20)$	$0 \cdot 1010$ (1)	0.0065 (3)	0.24139 (8)	4.6 (1)
$\mathrm{N}(21)$	$0 \cdot 3007$ (1)	0.0050 (3)	0.2697 (1)	3.6 (1)
C(22)	$0 \cdot 3287$ (2)	0.0100 (4)	0.3373 (1)	4.1 (1)
C(23)	$0 \cdot 4003$ (2)	-0.0351 (4)	0.3583 (1)	4.6 (2)
C(24)	$0 \cdot 4392$ (2)	0.0710 (4)	0.3315 (2)	4.9 (2)
C(25)	0.4091 (2)	0.0715 (4)	0.2635 (1)	5.3 (2)
C(26)	0.3375 (2)	0.1131 (4)	0.2421 (1)	4.6 (2)
C(27)	$0 \cdot 2879$ (2)	-0.0984 (5)	$0 \cdot 3614$ (2)	$5 \cdot 5$ (2)
Form 2				
C(1)	0.1251 (3)	-0.1942 (5)	0.3671 (5)	5.8 (2)
C(2)	0.1754 (3)	-0.2889 (7)	0.4001 (5)	6.9 (3)
C(3)	0.2161 (3)	-0.3559 (7)	0.3170 (7)	8.2 (4)
C(4)	0.2034 (3)	-0.3277 (8)	$0 \cdot 2000$ (6)	7.9 (3)
C(5)	0.1539 (3)	-0.2315 (8)	0.1645 (5)	7.9 (4)
C(6)	$0 \cdot 1151$ (3)	-0.1669 (6)	0.2487 (5)	$6 \cdot 8$ (3)
C(7)	0.0819 (3)	-0.1288 (6)	0.4587 (5)	6.9 (3)
Cl(8)	$0 \cdot 2506$ (1)	-0.4191 (3)	0.0948 (2)	11.7 (2)
O (9)	0.0908 (3)	-0.1550 (6)	0.5624 (4)	9.8 (3)
$\mathrm{O}(10)$	0.0353 (2)	-0.0443 (5)	0.4203 (4)	8.0 (2)
N(11)*	0.003 (2)	0.2150 (9)	0.260 (4)	6.7 (7)
C(12)*	-0.0340 (9)	0.331 (2)	0.199 (1)	9.5 (9)
$\mathrm{C}(13)^{*}$	-0.042 (1)	0.451 (2)	$0 \cdot 282$ (2)	13 (1)
C(14)*	0.0286 (9)	0.498 (2)	0.330 (2)	12 (1)
C(15)*	0.067 (1)	0.380 (2)	0.387 (2)	16 (2)
C(16)*	0.0740 (7)	0.259 (2)	0.307 (1)	9.6 (9)
C(17)*	-0.103 (1)	$0 \cdot 278$ (2)	$0 \cdot 151$ (1)	11 (1)

[^1]Discussion. The final atomic parameters for Forms 1 and 2 are listed in Table 2.* The thermal ellipsoids of the molecules are shown in Fig. 1 with atomic numbering. Bond lengths and angles are listed in Table 3. Stereoviews of the crystal structures are shown in Fig. 2.
In Form 1, $\mathrm{O}(10)$ and $\mathrm{O}(20)$ in the anion are linked by an asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{O}(10) \cdots \mathrm{O}(20) \quad 2.469(3), \quad \mathrm{O}(10)-\mathrm{H}(10) \quad 1 \cdot 12(6)$, $\mathrm{H}(10) \cdots \mathrm{O}(20) \quad 1 \cdot 37(6) \AA, \quad \mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}(20)$ $\left.164(5)^{\circ}\right]$. $\mathrm{O}(19)$ accepts hydrogen bonds from $\mathrm{N}(21)$ $[\mathrm{O}(10) \cdots \mathrm{N}(21) \quad 2 \cdot 873(3), \mathrm{O}(19) \cdots \mathrm{H}(21 B) \quad 2.01$ (3) \AA, $\left.\mathrm{O}(19) \cdots \mathrm{H}(21 B)-\mathrm{N}(21) 147(3)^{\circ}\right]$ and $\mathrm{N}(21)\left(\frac{1}{2}-x\right.$, $\left.\frac{1}{2}+y, \frac{1}{2}-z\right)[\mathrm{O}(19) \cdots \mathrm{N}(21) 2 \cdot 880(3), \mathrm{O}(19) \cdots \mathrm{H}(21 A)$ $\left.1.91(4) \AA, \mathrm{O}(19) \cdots \mathrm{H}(21 A)-\mathrm{N}(21) 172(4)^{\circ}\right]$ to form a ribbon along a twofold screw axis. The ribbons related by a center of symmetry at $\left(\frac{1}{4}, \frac{1}{4}, 0\right)$ form a sheet parallel to (400) by van der Waals interactions. The sheets related by a twofold axis are stacked along a to form the $C 2 / c$ structure. The modes of formation of the ribbon and the sheet are the same as those in

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters, and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51955 (32 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

(a)

(b)

Fig. 1. The thermal ellipsoids (50% probability) with atomic numbering. The H atoms attached to the O and N atoms are represented as spheres equivalent to $B=1.0 \AA^{2}$. (a) Form 1. (b) Form 2. The disordered cation is omitted.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Form 1			
$\mathrm{C}(1)-\mathrm{C}(2)$	1.374 (5)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$	1.397 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 392$ (6)	$\mathrm{C}(16)-\mathrm{C}(11)$	$1 \cdot 372$ (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.347 (5)	$\mathrm{C}(14)-\mathrm{Cl}(18) \quad 1$	1.744 (4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.377 (6)	$\mathrm{C}(11)-\mathrm{C}(17) \quad 1$	1.508 (4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.392 (6)	$\mathrm{C}(17)-\mathrm{O}(19)$	1.255 (4)
$\mathrm{C}(6)-\mathrm{C}(1)$	1.370 (5)	$\mathrm{C}(17)-\mathrm{O}(20)$	1.264 (4)
$\mathrm{C}(4)-\mathrm{Cl}(8)$	1.733 (4)	$\mathrm{N}(21)-\mathrm{C}(22) \quad 1$	1.503 (4)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.503 (4)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$	1.505 (5)
$\mathrm{C}(7)-\mathrm{O}(9)$	1-207 (4)	$\mathrm{C}(23)-\mathrm{C}(24) \quad 1$	1.517 (5)
$\mathrm{C}(7)-\mathrm{O}(10)$	1.307 (4)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1$	1.513 (5)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.387 (4)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1$	1.497 (5)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.387 (5)	$\mathrm{C}(26)-\mathrm{N}(21) \quad 1$	1.507 (4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1-364 (5)	$\mathrm{C}(22)-\mathrm{C}(27) \quad 1$	1.519 (5)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.370 (5)		
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$119 \cdot 2$ (3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.1 (4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 3$ (3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$120 \cdot 2$ (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.7 (4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Cl}(18)$) 119.5 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.4 (4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{Cl}(18)$) 119.0 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.5 (4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(17)$	$120 \cdot 3$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 9$ (3)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(17)$	$120 \cdot 2$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(8)$	119.4 (3)	$\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{O}(19)$	118.6 (3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cl}(8)$	119.2 (3)	$\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{O}(20)$	116.8 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	118.8 (3)	$\mathrm{O}(19)-\mathrm{C}(17)-\mathrm{O}(20)$) 124.6 (3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	122.0 (3)	$\mathrm{C}(26)-\mathrm{N}(21)-\mathrm{C}(22)$) 111.9 (2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(9)$	122.2 (3)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(23)$) $109.0(3)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(10)$	113.3 (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$112 \cdot 2$ (3)
$\mathrm{O}(9)-\mathrm{C}(7)-\mathrm{O}(10)$	124.5 (3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	110.9 (3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	119.6 (3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	111.5 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 2$ (3)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{N}(21)$	111.1 (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.4 (4)	$\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	108.5 (3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.5 (3)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	$113 \cdot 5$ (3)

Form 2 (bond lengths and angles for the cation are omitted because their values were restrained)

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.378(9)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.394(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.40(1)$	$\mathrm{C}(4)-\mathrm{Cl}(8)$	$1.753(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.39(1)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.484(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.39(1)$	$\mathrm{C}(7)-\mathrm{O}(9)$	$1.226(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.37(1)$	$\mathrm{C}(7)-\mathrm{O}(10)$	$1.283(8)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.8(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cl}(8)$	$119.4(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.9(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$118.7(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.4(7)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$122.4(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.9(7)$	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(9)$	$121.7(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.1(7)$	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(10)$	$114.7(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$121.9(6)$	$\mathrm{O}(9)-\mathrm{C}(7)-\mathrm{O}(10)$	$123.6(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(8)$	$118.7(6)$		

4-methylpiperidinium hydrogen $\operatorname{bis}(p$-methylbenzoate) (Misaki, Kashino \& Haisa, 1986). However, the mode of the stacking of the sheets is different because of the difference in packing of the methyl groups of the cations. The piperidinium ring takes a chair conformation. $\mathrm{N}(21)$ and $\mathrm{C}(24)$ deviate by -0.667 (4) and $0.648(5) \AA$, respectively, from the plane through $\mathrm{C}(22), \mathrm{C}(23), \mathrm{C}(25)$ and $\mathrm{C}(26)$. The methyl group is equatorially bonded to the ring: the torsion angles are $\mathrm{C}(26)-\mathrm{N}(21)-\mathrm{C}(22)-\mathrm{C}(27)=$ 178.6 (3) and $\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)=$ $177 \cdot 7$ (3) ${ }^{\circ}$.

The structure of Form 2 is disordered around a twofold axis. The center of the hydrogen bis $(p$ chlorobenzoate) anion lies on a $\overline{1}$ at $(0,0,0)$. Keeping the $\overline{1}$ symmetry of the anion, the disordered structure would be reduced to one of the maximal subgroup $P \overline{1}$ by eliminating the twofold axis. The $\mathrm{O} \cdots \mathrm{H}_{\cdots} \cdots$ hydrogen bond in the anion is crystallographically symmetric. The anions are linked through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a chain along c
$[\mathrm{N}(11) \cdots \mathrm{O}(9)(-x,-y, 1-z) 2.79(4), \mathrm{H}(11 A) \cdots \mathrm{O}(9)$ $1.74 \AA, \mathrm{~N}(11)-\mathrm{H}(11 A) \cdots \mathrm{O}(9) 165^{\circ} ; \mathrm{N}(11) \cdots \mathrm{O}(9)(x$, $\left.-y,-\frac{1}{2}+z\right) 2 \cdot 89(4), \mathrm{H}(11 B) \cdots \mathrm{O}(9) 2 \cdot 21 \AA, \mathrm{~N}(11)-$ $\left.\mathrm{H}(11 B) \cdots \mathrm{O}(9) 119^{\circ}\right]$. A similar chain has been found in piperidinium hydrogen $\operatorname{bis}(p$-bromobenzoate) ($P \overline{1}$, $Z=2$) (Misaki, Kashino \& Haisa, 1989a), in which the H atoms attached equatorially to the 2 and 6 positions of the piperidinium cation and the O atoms of the two nearest anions make contact with normal van der Waals distances and the dihedral angle between the anions is $14 \cdot 7(2)^{\circ}$. However, in Form 2 the corresponding dihedral angle is 85.8 (3) ${ }^{\circ}$ to avoid unreasonable contacts between the 2-methyl group of the cation and $O(10)$ of the nearest anion. The chains related by a center of symmetry at $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ form a sheet by disordering. The sheets related by a twofold screw axis are stacked along a to complete the whole structure. The mode of formation of the sheet is also similar to that in piperidinium hydrogen $\operatorname{bis}(p$ bromobenzoate), but the mode of the stacking of the sheets is different because of the difference in the dihedral angles between the anions.

In Forms 1 and 2 the anions are arranged side by side along a and stacked along b, and the long axes of the anions are parallel to c in Form 1 and [102] in Form 2. Thus, the cell dimensions of a and b of

Fig. 2. Stereoscopic views of the crystal structures. The \mathbf{H} atoms attached to the C atoms are omitted. (a) Form 1. The a axis points from left to right, the b axis downwards and the c axis onto the plane of the paper. (b) Form 2. The a axis points upwards, the b axis left to right and the c axis onto the plane of the paper. The disordered cation is included.

Form 1 are close to a and b respectively, of Form 2, and the direction of the c axis of Form 1 corresponds to that of [$\overline{10} 02$ of Form 2.

The $\mathrm{O} \cdots \mathrm{O}$ distance of the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond in Form 2 is significantly shorter than that in Form 1. The hydrogen bis(p-chlorobenzoate) anion in Form 2 has symmetric environments, while the same anion in Form 1 has asymmetric environments. Such a shortening of the $\mathrm{O} \cdots \mathrm{O}$ distance in symmetric environments has been seen for the same hydrogen bis(p-methylbenzoate) anion in environments of different symmetry (Misaki, Kashino \& Haisa, 1989b). This fact is an indication that symmetric environments around the anion are suitable for decreasing the $\mathrm{O} \cdots \mathrm{O}$ distance. Observations of the asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds show that the $\mathrm{O}-\mathrm{H}$ bond lengthens as the $\mathrm{O} \cdots \mathrm{O}$ distance decreases (Misaki, Kashino \& Haisa, 1986). Thus, it can be estimated that the $\mathrm{O}-\mathrm{H}$ length in Form 2 is longer than the $1 \cdot 12$ (6) \AA in Form 1. This means that the position of the H atom is within $0.1 \AA$ of the center of the hydrogen bond. This is the reason why the peak of the H atom in a difference Fourier map appeared at the center of the hydrogen bond. The spacing between the planes of the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ groups participating in the hydrogen bond is 0.121 (9) \AA and the KKM effect was not observed (Misaki, Kashino \& Haisa, 1989a).

The authors thank the Crystallographic Research Center, Institute for Protein Research, Osaka University, for the use of the facility.

References

Ashida, T. (1973). HBLS and DAPH. The Universal Crystallographic Computing System - Osaka. The Computation Center, Osaka Univ., Japan.
Fusir, S. (1979). MOLCON. The Universal Crystallographic Computing System - Osaka. The Computation Center, Osaka Univ., Japan.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1971). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Misaki, S., Kashino, S. \& Haisa, M. (1986). Bull. Chem. Soc. Jpn, 59, 1059-1065.
MISAKI, S., Kashino, S. \& Haisa, M. (1989a). Acta Cryst. C45, 62-65.
Misaki, S., Kashino, S. \& Haisa, M. (1989b). Acta Cryst. C45, 917-921.
Sakural, T. (1967). RSSFR-5. The Universal Crystallographic Computing System (I). The Crystallographic Society of Japan, Tokyo, Japan.
Takusagawa, F. (1982). CRLS. Tech. Rep. ICR-1982-0001-0002001. The Institute for Cancer Research, Philadelphia, USA.

Structures of (E)-9-Styrylacridine and (Z)-9-(2,5-Dimethylstyryl)acridine

By Paolo Sgarabotto* and Franco Ugozzoli
Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy

and Salvatore Sorriso
Dipartimento di Chimica, Università di Perugia, I-06100 Perugia, Italy
(Received 26 September 1988; accepted 24 February 1989)

Abstract. (E)-9-Styrylacridine, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}, M_{r}=281 \cdot 4$, triclinic, $P \overline{1}, \quad a=12.363(4), \quad b=8.386(3), \quad c=$ 8.482 (3) $\AA, \alpha=77.0$ (1), $\beta=121.0(1), \gamma=96.9(1)^{\circ}$, $V=734.5(9) \AA^{3}, Z=2, D_{x}=1.27 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu} K \alpha, \lambda$ $=1.5418 \AA, \mu=5.3 \mathrm{~cm}^{-1}, F(000)=296, T=293 \mathrm{~K}$, final conventional $R=0.038$ for 1346 symmetryindependent observed reflections. (Z)-9-(2,5-Dimethylstyryl)acridine, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}, M_{r}=309 \cdot 4$, triclinic,

[^2]0108-2701/89/101577-04\$03.00

P1, $a=11.905$ (4), $b=8.955$ (3), $c=8.429$ (3) \AA, $\alpha=$ $99.5(1), \beta=73.3(1), \gamma=92.8(1)^{\circ}, V=848.9(7) \AA^{3}$, $Z=2, D_{x}=1.21 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.5418 \AA, \mu=$ $5.0 \mathrm{~cm}^{-1}, F(000)=328, T=293 \mathrm{~K}$, final conventional $R=0.052$ for 2423 symmetry-independent observed reflections. The conformational geometry of the acridine moiety is similar in the two compounds and is characterized by the presence of an approximate mirror plane along the $\mathrm{N}(1)-\mathrm{C}(8)$ line and of a good degree of planarity for the three-condensed-rings system.
© 1989 International Union of Crystallography

[^0]: * Part III: Misaki, Kashino \& Haisa (1989b).
 \dagger To whom correspondence should be addressed.

[^1]: * Occupancy factor was assumed to be 0.5.

[^2]: * To whom correspondence should be addressed.

